Glutamate-evoked release of arachidonic acid from mouse brain astrocytes.

نویسندگان

  • N Stella
  • M Tencé
  • J Glowinski
  • J Prémont
چکیده

Brain astrocytes in primary culture from the rat or the mouse have been shown to possess ionotropic and metabotropic glutamatergic receptors. The activation of both types of receptors is responsible for a rise in the cytosolic concentration of calcium, while the stimulation of metabotropic receptors induces the accumulation of inositol phosphates. In the present study, it is demonstrated that in striatal astrocytes from mouse embryos, glutamate evokes a release of arachidonic acid. The nonionotropic receptors involved in this effect appeared to be pharmacologically distinct from those coupled to phospholipase C: (1) glutamate displayed different dose-response curves for the production of inositol phosphates (biphasic: EC50 = 25 and 300 microM) and the release of arachidonic acid (monophasic: EC50 = 200 microM); (2) L(+)-2-amino-4-phosphonobutyric acid (AP4) only antagonized the glutamate-evoked release of arachidonic acid without altering the production of inositol phosphates; (3) when used at a concentration of 0.1 mM, quisqualate induced a higher formation of inositol phosphates than glutamate (2 mM) while, in contrast to glutamate, it only weakly stimulated arachidonic acid release when used either at 0.1 mM or 1 mM. L(+)-2-amino-3-phosphonopropionic acid (AP3) suppressed both responses. The glutamate-evoked release of arachidonic acid seems to be oppositely regulated by protein kinases A and C. Indeed, the stimulation of adenylate cyclase by the beta-adrenergic agonist isoproterenol, vasoactive intestinal peptide, or pretreatment of striatal astrocytes with cholera toxin decreased the glutamate-evoked release of arachidonic acid. In contrast, ATP, which markedly stimulated inositol phosphate production, strongly potentiated the glutamate-evoked release of arachidonic acid.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interleukin-1 enhances the ATP-evoked release of arachidonic acid from mouse astrocytes.

During neuropathological states associated with inflammation, the levels of cytokines such as interleukin-1beta (IL-1beta) are increased. Several studies have suggested that the neuronal damage observed in pathogenesis implicating IL-1beta are caused by an alteration in the neurochemical interactions between neurons and astrocytes. We report here that treating striatal astrocytes in primary cul...

متن کامل

Modulation of the glutamate-evoked release of arachidonic acid from mouse cortical neurons: involvement of a pH-sensitive membrane phospholipase A2.

Excitatory synaptic transmission is associated with changes in both extracellular and intracellular pH. Using mouse cortical neurons in primary cultures, we studied the sensitivity of glutamate-evoked release of 3H-arachidonic acid (3H-AA) to changes in extracellular pH (pHo) and related intracellular pH (pHi). As pHo was shifted from 7.2 to 7.8, the glutamate-evoked release of 3H-AA was enhanc...

متن کامل

Somatostatin potentiates the alpha 1-adrenergic activation of phospholipase C in striatal astrocytes through a mechanism involving arachidonic acid and glutamate.

As previously shown with adenosine, somatostatin, which is ineffective alone, enhanced the alpha 1-adrenergic-agonist-stimulated production of inositol phosphates in cultured striatal astrocytes. This effect was suppressed in cells pretreated with pertussis toxin. It required external calcium and was selectively antagonized by both mepacrine, an inhibitor of phospholipase A2, and 5,8,11,14-eico...

متن کامل

The inhibitory neurotransmitter GABA evokes long‐lasting Ca2+ oscillations in cortical astrocytes

Studies over the last decade provided evidence that in a dynamic interaction with neurons glial cell astrocytes contribut to fundamental phenomena in the brain. Most of the knowledge on this derives, however, from studies monitoring the astrocyte Ca(2+) response to glutamate. Whether astrocytes can similarly respond to other neurotransmitters, including the inhibitory neurotransmitter GABA, is ...

متن کامل

2-Chloroadenosine potentiates the alpha 1-adrenergic activation of phospholipase C through a mechanism involving arachidonic acid and glutamate in striatal astrocytes.

In cultured striatal astrocytes, 2-chloroadenosine, an adenosine analog resistant to adenosine deaminase, although inactive alone, markedly potentiated the activation of phospholipase C induced by methoxamine, an alpha 1-adrenergic agonist. This effect was suppressed by antagonists of either A1 adenosine or alpha 1-adrenergic receptors. An influx of calcium and two distinct G-proteins are invol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 14 2  شماره 

صفحات  -

تاریخ انتشار 1994